32

Getting Started

RFC for a New Init

Mechanism

(Another Way to Initialize Objects in Objective C)

Writing one’s own initialization methods in an Objective-C
program while respecting the Apple - originally NeXT - official

writing rules can be a tedious task.

more generic approach, inspired from scripting
languages like Python or Ruby.

Let’s start with a short reminder of the current and his-

torical systems. For initialization methods to be added to

one of our classes, three rules should be complied with:

T his article aims at offering another, simpler and

* Redefining the designated initialization method of
the superclass is mandatory only if the class de-
fines a new one (with a different prototype).

« If a variant of an initialization method differs from
the original only by the number of expected param-
eters (and not by their nature), then the method that
accepts a ‘low’ number of parameters has to call
one that accepts just a little more.

(Implication: all initialization methods have to call
directly or indirectly the designated initialization
method of their own class.)

* The designated initialization method of a class
must call the designated initialization method of its
superclass.

For those familiar with initialization issues, remember
how boring it can be to have to choose between two
exclusive methods which can both apply to becoming
the designated initialization method? Example:

. (id) initProbeName: (NSString) *aName temperature
InDegreesFahrenheit: (double) aTemperature

* (id) initProbeName: (NSString) *aName temperature
InDegreesCelsius: (double) aTemperature

Now imagine there is a way to write your initialization
method only once, then use it in all your subclass hier-
archies.

Software Developer’s

The principle is simple and understated: it consists
in providing one unique method to perform all initializa-
tions, whatever the properties you want to define.

Furthermore, you don’t have to create new initializa-
tion methods, again and again, every time you add a
new class.

Implementation
First idea:
MyObject (subclass of NSObject)
Intuitively, the first idea that comes to the mind of an
object-oriented developer who wants to add behaviors
to a class is to ‘subclass’.

In this particular case, we would have to subclass

NSObject. That would probably work but that method is
both inelegant and ‘heavy’:

» we are inserting a new class into an already com-
plex hierarchy, and we must keep in mind from now
on that we must prefer our own root class (rather
than the official one, namely NSObject). Much ado
about a tiny method...

 ii order to remain consistent, we would have to ed-
it some of our parent class declarations for projects
we want to maintain and in which we want to add
our new mechanism.

This issue is conveniently solved by the concept of
Category. Categories play at least three roles, the
most prominent of which — and that is the heart of the
issue at hand — is to enable developers to expand the
list of a class’ methods (no new properties) without re-
quiring that the developer own the source code.

07/2013

So this is the choice we retained.
Better integration, NSObject+Mylnit (category):
For “not so modern” Objective C: Listing 1 and listing

2. Only for “modern” Objective C: Listing 3 and Listing 4.

Few lines but a compendium of concepts (some re-

cents and other more historical):

Category (to augment a class whose, in this case,
we do not have the source code) — simply with the
syntax NewClassName (CategoryName),

fast iteration — with for / in construction (I would
prefer @for / in to show it's an Objective C exclu-
siveness),

KVC (Key-Value Coding) — by using here the
“setValue:forKey:” method,

“block” — availability of blocks is not really “modern” but
it is always interesting to show usage of this feature,
exceptions handling — with @try / @catch construc-
tion and a NSException instance, => a lot of contro-
versy about NSException use on iOS (discussion in
http.//stackoverflow.com/questions/4310560/usage-of-
nsexception-in-iphone-apps with a link on a full article:
http://club15cc.com/code/objective-c/dispelling-nsex-
ception-myths-in-ios-can-we-use-try-catch-finally)
modern dictionary manipulation syntaxes (inciden-
tally of NSArray lists): initialization (container liter-
als), access (subscripting),

pseudo type instancetype (which is an efficient al-
ternative of id for this kind of methods),

more below...

Listing 1. file NSObject+InitWithDictionary.h
@interface NSObject (InitWithDictionary)
- (id) initWithDictionary: (NSDictionary *) aDict;
@end

Listing 2. file NSObject+InitWithDictionary.m

#import “NSObject+InitWithDictionary.h”
@implementation NSObject

(InitWithDictionary)

- (4 aDict

{

d) initWithDictionary: (NSDictionary ¥*)

if (self =

{

[self init])
[aDict enumerateKeysAndObjectsUsingBlock: *(id

iVarName, id initValue, BOOL *stop)

[self setValue: initValue forKey:
iVarName] ;
}
@catch

{

(NSException *exception)

NSLog (@”initWithDictionary
(%@)

reason], initValue);

assign

error value %@”, [exception

@

- (instancetype) initWithDictionary:

{

Listing 3. file NSObject+InitWithDictionary.h

@interface NSObject (InitWithDictionary)

- (instancetype) initWithDictionary: (NSDictionary *) aDict;
@end

Listing 4. file NSObject+InitWithDictionary.m

#import “NSObject+InitWithDictionary.h”

implementation NSObject (InitWithDictionary)

(NSDictionary *) aDict

if (self =
{

[self init])

for

{

(NSString *iVarName in aDict)
Qtry

[self setValue: aDict[iVarName]
forKey: iVarName];
}
@catch

{

(NSException *exception)

NSLog (@”initWithDictionary assign
@)

r (%0
reason], aDict[iVarName]) ;

value %@”, [exception

}

return self;

en.sdjournal.org

Software Developer's

33

http://stackoverflow.com/questions/4310560/usage-of-nsexception-in-iphone-apps
http://stackoverflow.com/questions/4310560/usage-of-nsexception-in-iphone-apps
http://club15cc.com/code/objective-c/dispelling-nsexception-myths-in-ios-can-we-use-try-catch-finally
http://club15cc.com/code/objective-c/dispelling-nsexception-myths-in-ios-can-we-use-try-catch-finally

34

Getting Started

| detect the begining of a controversy. With such a
mechanism the user (the consumer) will reap the error
messages (resulting from the exceptions).

That is why it is important to use wisely the NSString
constants (which carry our property names). This will
never be a panacea, but prevent a significant proportion
of inevitable typographical errors.

Question: how-to assign default values to properties
during object instanciation?

Probably 2 ways. | don’t know at that time which one
is the best (if there is one). Start redefining initWithDic-
tionary: which begins to send message [super initWith-

Dictionary: aDict] then continue giving initial values to
properties.

The other way you have to assign initial values for
your objects is to redefine your own init method which —
of course — starts with the message [super init]. It's pos-
sible simply because the main method, initWithDiction-
ary:, send message to self.

In fact | thinks both solutions are not really equivalent
and meet two different needs. (Up to you to discover
which one.)

And if it really is unavoidable, | do not see any cons-
indication to mix the two principles (historical initialization

Listing 5. file Person.h

#import “NSObject+InitWithDictionary.h”

@property (copy, nonatomic)

FOUNDATION EXPORT NSString * const PROPNAME LASTNAME;

NSString *lastname;

@property (copy, nonatomic) NSString *firstname;

FOUNDATION EXPORT NSString * const PROPNAME FIRSTNAME;
char gender; //

@property (assign, nonatomic)

‘F’emale, ‘M’ale, ‘U’nknown
FOUNDATION EXPORT NSString * const PROPNAME GENDER;
(assign, nonatomic) int

@property age;

FOUNDATION EXPORT NSString * const PROPNAME AGE;
- (id)
- (void)

init;

setAge: (int) newAge;

@end

Listing 6. file Person.m
#import “Person.h”
@implementation Person

@synthesize lastname = lastname, firstname = firstname,

gender = gender, age = age;

NSString * const PROPNAME LASTNAME = @”lastname”;
NSString * const PROPNAME FIRSTNAME = @“firstname”;
NSString * const PROPNAME GENDER = @”gender”;
NSString * const PROPNAME AGE = @”age”;
- (id) init
{

if (self = [super init])

self.gender = ‘U’;

// -1 for unknown age

- (void) setAge: (int) newAge
{
if ((newAge == -1) || ((newAge >= 0) && (newAge <
150)))

_age = newhAge;

NSLog (@”Age off limit (%i)”, newhAge);

@end

Listing 7. file main.m

#import “Person.h”

int main const char * argv[])

{

(int argc,

@autoreleasepool {

Person *yannick = [[Person alloc]

initWithDictionary: [NSDictionary
dictionaryWithObjectsAndKeys:
@”Yannick”, PROPNAME FIRSTNAME,
@”Cadin”, PROPNAME LASTNAME,
[NSNumber numberWithInt: 45],
PROPNAME AGE, nil]];

NSLog (@”Welcome to %@ %@ who is %d years

0ld”, [yannick firstname], [yannick

lastname], [yannick age]);

}

return 0;

Software Developer’s

07/2013

method prototype and call to the method described here).
Such a situation could arise in the context of a Protocol.

If it requires the definition of a method, for example
initProbeName: tempatureInDegreesCelsius,then vvhy
not write:
initProbeName:

- (instancetype) (NSString)

*aName temperatureInDegreesCelsius: (double)

{

. optional checking

aTemperature
(like if (aTemperature > 1000) ...)

return [self initWithDictionary: @{ @”name” : aName,

@”temperature” : @(aTemperature) }];

The syntax @(count) is a good example of what the
last release of Objective C admits, it’s called boxing.

Usage
For “classic” Objective C: Listing 5-7. The idea offered
here became even more interesting with the recent

Listing 8. file Person.h

The same as for “classic” Objective C, only replace
(id) init;
by

(instancetype) init;

Listing 9. file Person.m

The same as for “classic” Objective C, only replace
(id) init

by

(instancetype) init

AND.. You can remove all the “@synthesize” lines.

Listing 10. file main.m

#import “Person.h”

int main

{

(int argc, const char * argv[])
@autoreleasepool {
Person *yannick = [[Person alloc]

initWithDictionary: @{ PROPNAME FIRSTNAME :

@”Yannick”, PROPNAME LASTNAME : @”Cadin”, PROPNAME
AGE : @45 } 1;

NSLog (@”Welcome to %@ %@ who is %d years
0ld”, yannick.firstname, yannick.
lastname, yannick.age);

}
return 0;

en.sdjournal.org

changes in Objective-C. In particular literals and con-
tainer literals which permit a very short wrtiing of ma-
ny expressions, especially NSDictionary instances. The
same for NSArray, NSNumber, boolean constants, etc.
http://clang.llvm.org/docs/ObjectiveClLiterals.html. For
“modern” Objective C: Listing 8-10.

End of concept overviews:

» dot notation (not so recent).

» automatic (implicit) synthesize.

* boxing (in an example above).

* modern syntaxes (literals) of constants writing
(NSNumber, booleans, etc).

Depending the release of Objective C you want to
write for, you have to use the first syntax or you can
prefer the second (for the latest releases). My own
opinion (thanks to add yours ;-)

Pros

+ simplicity.
» the KVC mechanism allow keeping custom initial-
ization of each variable. It's not a short circuit.

Cons

(performance) slowness (but this needs to be qualified
because it probably depends on ratio: class hierarchy
depth — given the potentially large number of messages
— from the number of values to allocate / initialize) the
main reasons for the poor performances: NSExceptions
management and use of the KVC mechanism.

For interested readers: https./github.com/nicklock-
wood/BaseModel. For discussion about const in Objec-
tive C: http.//stackoverflow.com/questions/538996/con-
stants-in-objective-c.

YANNICK CADIN

Yannick Cadin is 45 years old, including 27 devoted mainly to
computer industry (hardware and software). Programming of
UBI-SOFT's very first game as freelance developer. Many salary
jobs in small or medium companies: video game publisher, pro-
fessional software editor, textile CAM software editor, Decision
Tools software editor, computer resellers or distributors, con-
sulting companies, value-added resellers (VAR), mapping com-
pany and even in the public sector with the title of Chief Operat-
ing Officer at the Louvre Museum. Manager of MICRO REPONSE
specialized in providing computers running NEXTSTEP / Open-
Step. Positions held: most of them, sales engineer, developer,
support technician, trainer, ... Freelance writer on a more or less
regular basis for a dozen magazines for the last 26 years. Casu-
al proofreader and speaker. Red Hat Linux, Ubuntu, LPI, * BSD
and Apple certified. Currently Manager of Diablotin.

Software Developer's | .,
JOURNAL

Rey Ideas & solutions for professional proglemhers P

http://clang.llvm.org/docs/ObjectiveCLiterals.html
https://github.com/nicklockwood/BaseModel
https://github.com/nicklockwood/BaseModel
http://stackoverflow.com/questions/538996/constants-in-objective-c
http://stackoverflow.com/questions/538996/constants-in-objective-c

